论文标题
镜头手术多项式的第三学期
The third term in lens surgery polynomials
论文作者
论文摘要
众所周知,所有镜头太空结的亚历山大多项式的第二个系数为$ s^3 $是$ -1 $。我们表明,亚历山大多项式的非零第三个系数条件是镜头空间结$ k $ in $ s^3 $,将手术限制在$(2,2G+1)$ - torus结所实现的手术中,其中$ g $是$ k $的$ g $。特别是,这种镜头手术多项式与$δ_{t(2,2g+1)}(t)$重合。
It is well-known that the second coefficient of the Alexander polynomial of any lens space knot in $S^3$ is $-1$. We show that the non-zero third coefficient condition of the Alexander polynomial of a lens space knot $K$ in $S^3$ confines the surgery to the one realized by the $(2,2g+1)$-torus knot, where $g$ is the genus of $K$. In particular, such a lens surgery polynomial coincides with $Δ_{T(2,2g+1)}(t)$.