论文标题
平面i的间隔组合:梯形
Combinatorics of intervals in the plane I: trapezoids
论文作者
论文摘要
我们研究$ \ mathbb {r}^2 $的间隔安排,其中许多对形成梯形。我们表明,形成许多梯形的任何间隔都必须具有我们表征的基础代数结构。这导致了一些突出的间隔组的意外示例,这些间隔形成了许多梯形,其中重要的作用是由第二曲线扮演的。
We study arrangements of intervals in $\mathbb{R}^2$ for which many pairs form trapezoids. We show that any set of intervals forming many trapezoids must have underlying algebraic structure, which we characterise. This leads to some unexpected examples of sets of intervals forming many trapezoids, where an important role is played by degree 2 curves.