论文标题

浮雕系统中的可调易碎拓扑

Tunable Fragile Topology in Floquet Systems

论文作者

Zhang, Rui-Xing, Yang, Zhi-Cheng

论文摘要

我们将脆弱拓扑的概念扩展到定期驱动的系统。我们在两个不同的模型中展示了驾驶引起的脆弱拓扑,即Floquet Honeycomb模型和Floquet $π$ -Flux Square-lattice模型。在这两种情况下,我们都会发现一个丰富的相图,其中包括受晶体旋转或镜子对称性,浮雕chern绝缘子和微不足道的原子相保护的浮雕脆弱的拓扑相,具有独特的边界特征。值得注意的是,通过简单地调整驱动幅度,可以可行地实现不同阶段之间的过渡,这是启用驾驶拓扑现象的独特特征。此外,在我们的系统中,角度定位的分数电荷被确定为脆弱拓扑的``吸烟枪''信号。我们的工作为研究和实现浮雕系统中脆弱的拓扑铺平了道路。

We extend the notion of fragile topology to periodically-driven systems. We demonstrate driving-induced fragile topology in two different models, namely, the Floquet honeycomb model and the Floquet $π$-flux square-lattice model. In both cases, we discover a rich phase diagram that includes Floquet fragile topological phases protected by crystalline rotation or mirror symmetries, Floquet Chern insulators, and trivial atomic phases, with distinct boundary features. Remarkably, the transitions between different phases can be feasibly achieved by simply tuning the driving amplitudes, which is a unique feature of driving-enabled topological phenomena. Moreover, corner-localized fractional charges are identified as a ``smoking-gun'' signal of fragile topology in our systems. Our work paves the way for studying and realizing fragile topology in Floquet systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源