论文标题

针对轮换系统的二项式避免政策的渐近最佳性,切换时间较大

Asymptotic Optimality of the Binomial-Exhaustive Policy for Polling Systems with Large Switchover Times

论文作者

Hu, Yue, Dong, Jing, Perry, Ohad

论文摘要

我们研究了在队列上产生持有成本时,转换时间较大的投票系统的最佳控制问题。特别是,我们考虑一个随机网络,该网络具有单个服务器,该网络根据预先指定的顺序在几个缓冲区(队列)之间切换,假设队列之间的切换时间相对于单个作业的处理时间很大。由于其复杂性,计算该系统的最佳控制是非常令人难以置信的,因此我们改为搜索渐近的最佳控制。为此,我们首先解决了确定性放松的最佳控制问题(即流体模型),该问题被表示为混合动力学系统。然后,我们将解决方案转化为基础随机系统的二项式避免策略,并证明该策略在大型转换时间缩放率方面均无最佳,提供了一定的统一的可集成性(UI)条件。最后,我们证明了上述UI条件在以下情况下存在:(i)持有成本(最多)线性增长,所有服务时间都有有限的第二瞬间; (ii)保持成本最多以多项式速率(任何程度)增长,并且服务时间分布具有有限的力矩生成功能。

We study an optimal-control problem of polling systems with large switchover times, when a holding cost is incurred on the queues. In particular, we consider a stochastic network with a single server that switches between several buffers (queues) according to a pre-specified order, assuming that the switchover times between the queues are large relative to the processing times of individual jobs. Due to its complexity, computing an optimal control for such a system is prohibitive, and so we instead search for an asymptotically optimal control. To this end, we first solve an optimal control problem for a deterministic relaxation (namely, for a fluid model), that is represented as a hybrid dynamical system. We then "translate" the solution to that fluid problem to a binomial-exhaustive policy for the underlying stochastic system, and prove that this policy is asymptotically optimal in a large-switchover-time scaling regime, provided a certain uniform integrability (UI) condition holds. Finally, we demonstrate that the aforementioned UI condition holds in the following cases: (i) the holding cost has (at most) linear growth, and all service times have finite second moments; (ii) the holding cost grows at most at a polynomial rate (of any degree), and the service-time distributions possess finite moment generating functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源