论文标题
第一原理的不确定性定量对声子特性和晶格导热率的预测
Uncertainty quantification in first-principles predictions of phonon properties and lattice thermal conductivity
论文作者
论文摘要
我们提出了一个框架,用于量化来自使用密度功能理论(DFT)来计算原子力常数的声子特性的预测和导热性的预测中的交换相关(XC)产生的不确定性。首先应用牛肉VDW XC功能的能量集合功能来确定原子间力常数的集合,然后将其用作晶格动力学计算的输入和Boltzmann传输方程的解决方案。该框架应用于同位素纯硅。我们发现,不确定性估计来自其他XC功能和实验的结合性质预测(例如,声子分散,特定的热,导热率)。我们区分与预测的热导率相关的属性[我们发现,在热导率的集合预测中的差异与平均自由路径$ 100 $至300美元$ nm的声子的行为相关。该框架系统地说明了声子计算中的XC不确定性,每当怀疑XC功能的选择会影响物理解释时,应使用。
We present a framework for quantifying the uncertainty that results from the choice of exchange-correlation (XC) functional in predictions of phonon properties and thermal conductivity that use density functional theory (DFT) to calculate the atomic force constants. The energy ensemble capabilities of the BEEF-vdW XC functional are first applied to determine an ensemble of interatomic force constants, which are then used as inputs to lattice dynamics calculations and a solution of the Boltzmann transport equation. The framework is applied to isotopically-pure silicon. We find that the uncertainty estimates bound property predictions (e.g., phonon dispersions, specific heat, thermal conductivity) from other XC functionals and experiments. We distinguish between properties that are correlated with the predicted thermal conductivity [e.g., the transverse acoustic branch sound speed ($R^2=0.89$) and average Grüneisen parameter ($R^2=0.85$)] and those that are not [e.g., longitudinal acoustic branch sound speed ($R^2=0.23$) and specific heat ($R^2=0.00$)]. We find that differences in ensemble predictions of thermal conductivity are correlated with the behavior of phonons with mean free paths between $100$ and $300$ nm. The framework systematically accounts for XC uncertainty in phonon calculations and should be used whenever it is suspected that the choice of XC functional is influencing physical interpretations.