论文标题

非线性重力中的非词性黑洞,耦合到欧拉 - 海森贝格电动力学

Nonsingular black holes in nonlinear gravity coupled to Euler-Heisenberg electrodynamics

论文作者

Guerrero, Merce, Rubiera-Garcia, Diego

论文摘要

我们研究了由Euler-Heisenberg的电动力学理论支持的静态,球形对称的黑洞,并与两种不同的重力理论耦合。这样的理论是二次$ f(r)$模型和爱丁顿风格的出生式重力,均在公制的空间中配制,公制和仿射连接是独立的字段。在两种情况下,我们都会发现相应场方程的精确溶液,其特征在于质量,电荷,欧拉 - 海森贝格耦合参数和修饰的重力。对于每个这样的解决方案家族,我们都表征了其地平线结构和最内向区域的修改,发现某些亚类是地理上的。在两种不同的机制下实现了奇异性正则化:要么将歧管的边界推到无限的仿射距离上,因此无法在有限的时间内通过任何测量,或者存在虫洞结构的存在,从而使所有地理位置都可以平滑地延伸,从而克服了潜在障碍的最大障碍。

We study static, spherically symmetric black holes supported by Euler-Heisenberg theory of electrodynamics and coupled to two different modified theories of gravity. Such theories are the quadratic $f(R)$ model and Eddington-inspired Born-Infeld gravity, both formulated in metric-affine spaces, where metric and affine connection are independent fields. We find exact solutions of the corresponding field equations in both cases, characterized by mass, charge, the Euler-Heisenberg coupling parameter and the modified gravity one. For each such family of solutions, we characterize its horizon structure and the modifications in the innermost region, finding that some subclasses are geodesically complete. The singularity regularization is achieved under two different mechanisms: either the boundary of the manifold is pushed to an infinite affine distance, not being able to be reached in finite time by any geodesic, or the presence of a wormhole structure allows for the smooth extension of all geodesics overcoming the maximum of the potential barrier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源