论文标题
不平等措施:与其他措施相比的加尔各答指数
Inequality Measures: The Kolkata index in comparison with other measures
论文作者
论文摘要
我们提供了有关社会不平等的加尔各答指数的调查,尤其是收入不平等。基于这样的观察,即不平等功能(例如洛伦兹功能),对人口的收入或财富衡量,通常是非线性的,我们表明,这种非线性功能的固定点(例如Kolkata Index K)(或相关)(或相关)(例如互补的Lorenz功能)提供了比平均量化的互补量(例如互补的量)。确实,加尔各答指数可以被视为标准化不平等函数的广义赫希指数,并给出了富裕(1-K)人口所拥有的总财富的一部分。我们分析了连续收入和离散收入分配的不平等指数的结构。我们还将加尔各答指数与Gini系数和Pietra指数等其他一些措施进行了比较。最后,我们提供了一些经验研究,以说明加尔各答指数与基尼系数之间的差异。
We provide a survey of the Kolkata index of social inequality, focusing in particular on income inequality. Based on the observation that inequality functions (such as the Lorenz function), giving the measures of income or wealth against that of the population, to be generally nonlinear, we show that the fixed point (like Kolkata index k) of such a nonlinear function (or related, like the complementary Lorenz function) offer better measure of inequality than the average quantities (like Gini index). Indeed the Kolkata index can be viewed as a generalized Hirsch index for a normalized inequality function and gives the fraction k of the total wealth possessed by the rich (1-k) fraction of the population. We analyze the structures of the inequality indices for both continuous and discrete income distributions. We also compare the Kolkata index to some other measures like the Gini coefficient and the Pietra index. Lastly, we provide some empirical studies which illustrate the differences between the Kolkata index and the Gini coefficient.