论文标题

详细的细胞自动机熵

Rescaled entropy of cellular automata

论文作者

Burguet, David

论文摘要

对于具有D $ \ ge $ 1的d维蜂窝自动机,我们引入了一个重新筛选的熵,该熵通过概括以前的方法来估计熵在小尺度上的增长率[1,9]。我们还定义了Lyapunov指数的概念,并证明了[16,15]中d = 1的不平等现象。最后,我们将熵公式概括为一维置换性细胞自动机[18],以更高尺寸的重新熵。最后的结果扩展了Shinoda和Tsukamoto的最新作品[17],以处理二维符号动力学的度量平均维度。

For a d-dimensional cellular automaton with d $\ge$ 1 we introduce a rescaled entropy which estimates the growth rate of the entropy at small scales by generalizing previous approaches [1, 9]. We also define a notion of Lyapunov exponent and proves a Ruelle inequality as already established for d = 1 in [16, 15]. Finally we generalize the entropy formula for 1-dimensional permutative cellular automata [18] to the rescaled entropy in higher dimensions. This last result extends recent works [17] of Shinoda and Tsukamoto dealing with the metric mean dimensions of two-dimensional symbolic dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源