论文标题

贝叶斯多层记录连锁程序,用于分析脑外伤患者的功能状态

A Bayesian Multi-Layered Record Linkage Procedure to Analyze Functional Status of Medicare Patients with Traumatic Brain Injury

论文作者

Shan, Mingyang, Thomas, Kali, Gutman, Roee

论文摘要

了解损伤严重程度与患者康复潜力之间的关联对于为脑损伤(TBI)提供更好的护理至关重要。对这种关系的估计需要有关损伤严重程度,患者人口统计和医疗保健利用的临床信息,这些信息通常是从单独的数据来源获得的。由于隐私和机密性法规,这些数据源不包括唯一的标识符来链接跨数据源的记录。记录链接是一个过程,可以识别在没有唯一标识符的情况下代表跨数据源的相同实体的记录。这些过程通常依赖于两个数据源中出现的变量之间的一致性来链接记录。但是,当每个文件中的记录数量较大时,此任务在计算上是密集的,可能会导致错误的链接。阻止是一种数据分配技术,可减少应考虑的可能链接的数量。医疗保健提供商可以用作与医疗保健数据集的记录链接应用中的块。但是,可能不会在文件中唯一识别提供商。我们提出了一个同时执行块级和记录级链接的贝叶斯记录链接过程。这种迭代方法将记录级别的链接在块对中结合在一起,以提高块级链接的准确性。随后,该算法使用链接空间通过阻塞来改善记录级别的链接。我们证明,与现有的贝叶斯记录链接方法相比,我们提出的方法提供了改进的性能,而贝叶斯记录连锁方法不包括阻塞。然后,提出的程序用于将国家创伤数据库中的注册表数据与Medicare索赔数据合并,以估计受伤严重程度与TBI患者康复之间的关系。

Understanding the association between injury severity and patients' potential for recovery is crucial to providing better care for patients with traumatic brain injury (TBI). Estimation of this relationship requires clinical information on injury severity, patient demographics, and healthcare utilization, which are often obtained from separate data sources. Because of privacy and confidentiality regulations, these data sources do not include unique identifiers to link records across data sources. Record linkage is a process to identify records that represent the same entity across data sources in the absence of unique identifiers. These processes commonly rely on agreement between variables that appear in both data sources to link records. However, when the number of records in each file is large, this task is computationally intensive and may result in false links. Blocking is a data partitioning technique that reduces the number of possible links that should be considered. Healthcare providers can be used as blocks in applications of record linkage with healthcare datasets. However, providers may not be uniquely identified across files. We propose a Bayesian record linkage procedure that simultaneously performs block-level and record-level linkage. This iterative approach incorporates the record-level linkage within block pairs to improve the accuracy of the block-level linkage. Subsequently, the algorithm improves record-level linkage using the accurate partitioning of the linkage space through blocking. We demonstrate that our proposed method provides improved performance compared to existing Bayesian record linkage methods that do not incorporate blocking. The proposed procedure is then used to merge registry data from the National Trauma Data Bank with Medicare claims data to estimate the relationship between injury severity and TBI patients' recovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源