论文标题
双曲线缸和纠缠熵:重力,较高的旋转,$ p $ - 形式
Hyperbolic cylinders and entanglement entropy: gravitons, higher spins, $p$-forms
论文作者
论文摘要
我们表明,$ d = 4 $的纠缠熵在最近由贝内德蒂和卡西尼(Casini)计算出的球体上的线性化引力与使用$ s^1 \ times ads_3 $在$ s^1 \ s^1 \ s^1 \ s^1 \ time ADS上计算出的galuza-klein塔相吻合。 $ s^1 $上的常数模式的质量使Brietenholer-Freedman限制为$ ads_3 $。这种情况还确保了由双曲线缸上分配功能确定的较高自旋的纠缠熵与它们最近的猜想一致。从2形式对$ s^1 \ times ads_5 $的动作开始,然后固定量规,我们评估了跨球体上的纠缠熵以及相应的扭曲操作员的尺寸。我们证明,相应扭曲操作员的共形尺寸与使用复制锥上应力张量的期望值获得的相一致。对于在尺寸上的共形$ p $ - 形式,它与确定这些字段压力张量的$ 3 $点功能的系数遵守预期关系。
We show that the entanglement entropy of $D=4$ linearized gravitons across a sphere recently computed by Benedetti and Casini coincides with that obtained using the Kaluza-Klein tower of traceless transverse massive spin-2 fields on $S^1\times AdS_3$. The mass of the constant mode on $S^1$ saturates the Brietenholer-Freedman bound in $AdS_3$. This condition also ensures that the entanglement entropy of higher spins determined from partition functions on the hyperbolic cylinder coincides with their recent conjecture. Starting from the action of the 2-form on $S^1\times AdS_5$ and fixing gauge, we evaluate the entanglement entropy across a sphere as well as the dimensions of the corresponding twist operator. We demonstrate that the conformal dimensions of the corresponding twist operator agrees with that obtained using the expectation value of the stress tensor on the replica cone. For conformal $p$-forms in even dimensions it obeys the expected relations with the coefficients determining the $3$-point function of the stress tensor of these fields.