论文标题
Virasoro Vertex代数和$ W $ -Algebras的置换术语
Permutation orbifolds of Virasoro vertex algebras and $W$-algebras
论文作者
论文摘要
我们研究了Virasoro Vertex代数$ \ MATHCAL {V} _C _C $ C $ C $的$ 2 $倍和$ 3 $ flold张量产品的置换量。特别是,我们表明,对于所有有限的中心电荷,$ \ left(\ Mathcal {v} _c^{\ otimes 3} \ right)我们还研究了它们的简单商,并获得了与主要nilpotent元素相关的某些合理仿射$ W $代数的新实现。进一步分析著名的$(2,5)$ - 最小顶点代数$ \ mathcal {l} _ { - \ frac {22} {5}} $的进一步分析。
We study permutation orbifolds of the $2$-fold and $3$-fold tensor product for the Virasoro vertex algebra $\mathcal{V}_c$ of central charge $c$. In particular, we show that for all but finitely many central charges $\left(\mathcal{V}_c^{\otimes 3}\right)^{\mathbb{Z}_3}$ is a $W$-algebra of type $(2, 4, 5, 6^3 , 7, 8^3 , 9^3 , 10^2 )$. We also study orbifolds of their simple quotients and obtain new realizations of certain rational affine $W$-algebras associated to a principal nilpotent element. Further analysis of permutation orbifolds of the celebrated $(2,5)$-minimal vertex algebra $\mathcal{L}_{-\frac{22}{5}}$ is presented.