论文标题
在lusztig量子划分的功率代数的HOPF代数结构上
On the Hopf algebra structure of the Lusztig quantum divided power algebras
论文作者
论文摘要
我们研究Lusztig量子组的HOPF代数结构。首先,我们表明零部分是有限的阿贝尔集团的组代数的张量产物,其包裹的代数是Abelian Lie代数的代数。其次,我们通过Sommerhauser提出的形式主义中的合适的作用和同情来描述三角形分解,从而从加号,负和零部分构建它们。
We study the Hopf algebra structure of Lusztig's quantum groups. First we show that the zero part is the tensor product of the group algebra of a finite abelian group with the enveloping algebra of an abelian Lie algebra. Second we build them from the plus, minus and zero parts by means of suitable actions and coactions within the formalism presented by Sommerhauser to describe triangular decompositions.