论文标题

一个子概标,用于扭曲的$ l $功能

A subconvex bound for twisted $L$-functions

论文作者

Sun, Qingfeng, Wang, Hui

论文摘要

令$ \ mathfrak {q}> 2 $为素数,$χ$原始的dirichlet字符modulo $ \ mathfrak {q} $和$ f $ a原始的holomorphic cusp形式或hecke-maass cusp的水平$ \ m m athfrak {q} $ and triv {q} $ and trivial nebentypus。我们证明了subconvex绑定$$ l(1/2,f \ otimesχ)\ ll \ mathfrak {q}^{1/2-1/12+\ varepsilon},$$,隐式常数仅取决于$ f $ and $ f $ and $ \ varepsilon $的Archimedean参数。主要输入是[1]中开发的一种修改的琐碎三角洲方法。

Let $\mathfrak{q}>2$ be a prime number, $χ$ a primitive Dirichlet character modulo $\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\otimes χ)\ll \mathfrak{q}^{1/2-1/12+\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\varepsilon$. The main input is a modifying trivial delta method developed in [1].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源