论文标题

$(sdgi)$ space的八个$ su(3)$代数的四杆属性

Quadrupole properties of the eight $SU(3)$ algebras in $(sdgi)$ space

论文作者

Sahu, R., Kota, V. K. B., Srivastava, P. C.

论文摘要

核子占据振荡器壳$η$,有$ 2^{η/2} $ $ su(3)$代数的数量; $η/2 $是$η/2 $的整数部分。最近证明,在$(SDG)$ Space中使用四个$ SU(3)$代数分析第一个非琐事情况,即它们产生了完全不同的四极属性属性,尽管它们都产生了相同的频谱。更复杂的情况是$(3)$代数为$(SDGI)$空间。在目前的工作中,首先使用更具分析性的相互作用的玻色子模型对这八个代数产生的四极属性进行分析。此外,使用$ SDGI $空间中的三个核子示例,使用了壳模型和密切相关的变形壳模型。发现总体而言,$ su(3)$代数中的六个会产生岩体形状和两个扁平形状。在所有这些中,$ su(3)$代数之一为低洼状态产生了很小的四极矩。

With nucleons occupying an oscillator shell $η$, there are $2^{η/2}$ number of $SU(3)$ algebras; $η/2$ is the integer part of $η/2$. Analyzing the first non trivial situation with four $SU(3)$ algebras in $(sdg)$ space, demonstrated recently is that they generate quite different quadrupole properties though they all generate the same spectrum. More complex situation is with eight $SU(3)$ algebras in $(sdgi)$ space. In the present work, quadrupole properties generated by these eight algebras are analyzed first using the more analytically tractable interacting boson model. In addition, shell model and the closely related deformed shell model are used with three examples of nucleons in $sdgi$ space. It is found that in general six of the $SU(3)$ algebras generate prolate shape and two oblate shape. Out of all these, one of the $SU(3)$ algebra generates quite small quadrupole moments for the low-lying states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源