论文标题
与分布式时间延迟的Hegselmann-Krause-type模型的共识收敛
Convergence to consensus for a Hegselmann-Krause-type model with distributed time delay
论文作者
论文摘要
在本文中,我们研究了具有分布时间延迟和积极影响功能的Hegselmann-Krause意见形成模型。通过Lyapunov功能方法,我们在初始延迟的较小度假设下提供了共识结果。此外,我们分析了一个传输方程,该方程是粒子粒子的均值 - 场极限。我们使用先验估计值,使用相对于试剂数量统一的先验估计值,证明了延迟传输方程的测量值解决方案的全局存在和唯一性。
In this paper we study a Hegselmann-Krause opinion formation model with distributed time delay and positive influence functions. Through a Lyapunov functional approach, we provide a consensus result under a smallness assumption on the initial delay. Furthermore, we analyze a transport equation, obtained as mean--field limit of the particle one. We prove global existence and uniqueness of the measure-valued solution for the delayed transport equation and its convergence to consensus under a smallness assumption on the delay, using a priori estimates which are uniform with respect to the number of agents.