论文标题

深度照明环境图估算了球形全景

Deep Lighting Environment Map Estimation from Spherical Panoramas

论文作者

Gkitsas, Vasileios, Zioulis, Nikolaos, Alvarez, Federico, Zarpalas, Dimitrios, Daras, Petros

论文摘要

当在真实环境中组合合成内容(以及混合现实和后期制作中的应用程序)时,估计场景的照明是一项非常重要的任务。在这项工作中,我们提出了一个数据驱动的模型,该模型估算了单眼单眼球形全景图的HDR照明环境图。除了是一个具有挑战性且精神错乱的问题外,照明估计任务还遭受了缺乏轻松照明地面真相数据的损害,这一事实阻碍了数据驱动的方法的适用性。我们以不同的方式解决了这个问题,从而利用表面几何形状的可用性来利用基于图像的重新考虑作为数据生成器和监督机制。这取决于全球兰伯特的假设,该假设有助于我们克服与预烘焙照明有关的问题。我们通过光度损失来重新确定培训数据,并通过一种基于图像的重新计算技术来补充模型的监督。最后,由于我们预测了球形光谱系数,因此我们表明,通过对预测系数施加先验分布,我们可以大大提高性能。 https://vcl3d.github.io/deeppanoramalighting可用的代码和模型。

Estimating a scene's lighting is a very important task when compositing synthetic content within real environments, with applications in mixed reality and post-production. In this work we present a data-driven model that estimates an HDR lighting environment map from a single LDR monocular spherical panorama. In addition to being a challenging and ill-posed problem, the lighting estimation task also suffers from a lack of facile illumination ground truth data, a fact that hinders the applicability of data-driven methods. We approach this problem differently, exploiting the availability of surface geometry to employ image-based relighting as a data generator and supervision mechanism. This relies on a global Lambertian assumption that helps us overcome issues related to pre-baked lighting. We relight our training data and complement the model's supervision with a photometric loss, enabled by a differentiable image-based relighting technique. Finally, since we predict spherical spectral coefficients, we show that by imposing a distribution prior on the predicted coefficients, we can greatly boost performance. Code and models available at https://vcl3d.github.io/DeepPanoramaLighting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源