论文标题

概括丢失总和中的分布

Generalizing the Distribution of Missing Sums in Sumsets

论文作者

Chu, Hung V., King, Dylan, Luntzlara, Noah, Martinez, Thomas C., Miller, Steven J., Shao, Lily, Sun, Chenyang, Xu, Victor

论文摘要

给定一组有限的整数$ a $,其集合为$ a+a:= \ {a_i+a_j \ mid a_i,a_j \ in a \} $。我们检查$ | a+a | $作为一个随机变量,其中$ a \ subset i_n = [0,n-1] $,从0到$ n-1 $的整数,因此$ i_n $的每个元素均在$ a $ a $ a $ a中,固定概率$ p \ in(0,1)$。最近,Martin和O'Bryant研究了$ P = 1/2 $的情况,并找到了$ \ Mathbb {e} [| a+a |] $的封闭式。 Lazarev,Miller和O'Bryant扩展了结果,以找到$ \ text {var}(| a+a |)$的数值估计,并在$ a+a+a $ a $ a+a $,$ m_ {n \,; \,; \,; \,p}(k)(k)中的丢失总和的数量进行界定。他们的主要工具是一个图理论框架,我们现在将其概括为$ \ mathbb {e} [| a+a+a |] $和$ \ text {var}(| a+a |)$ in(0,1)$,并为$ p \ in(0,1)$建立$ \ mathbb {e | a | a | a | a | a | a |] $ m_ {n \,; \,p}(k)$。 我们继续研究$ m_ {n \,; \,p}(k)$,通过研究$ m_p(k)= \ lim_ {n \ to \ infty} m_ {n \ n \,; \,; \,p}(k)$,已被Zhao证明存在。 Lazarev,Miller和O'Bryant证明,对于$ p = 1/2 $,$ m_ {1/2}(6)> m_ {1/2}(7)<m_ {1/2}(8)$。这种分布不是单峰的,据说在7时具有“ divot”。我们报告结果调查了该divot为$ p $各种,并且通过理论和数值分析都证明,对于$ p \ geq 0.68 $,divot售价为$ 1 $;也就是说,$ m_ {p}(0)> m_ {p}(1)<m_ {p}(2)$。 最后,我们将最初由Lazarev,Miller和O'Bryant引入的图理论框架扩展到相关的总和$ a+b $,其中$ b $与$ \ Mathbb {p}(p}(p}(i \ in Mid I \ in A)= p_1 $和$ him b}的概率$ \ mathbb {p}(i \ in Mid i \ in Med MathB}) A)= P_2 $。我们使用该框架的扩展提供了一些初步结果。

Given a finite set of integers $A$, its sumset is $A+A:= \{a_i+a_j \mid a_i,a_j\in A\}$. We examine $|A+A|$ as a random variable, where $A\subset I_n = [0,n-1]$, the set of integers from 0 to $n-1$, so that each element of $I_n$ is in $A$ with a fixed probability $p \in (0,1)$. Recently, Martin and O'Bryant studied the case in which $p=1/2$ and found a closed form for $\mathbb{E}[|A+A|]$. Lazarev, Miller, and O'Bryant extended the result to find a numerical estimate for $\text{Var}(|A+A|)$ and bounds on the number of missing sums in $A+A$, $m_{n\,;\,p}(k) := \mathbb{P}(2n-1-|A+A|=k)$. Their primary tool was a graph-theoretic framework which we now generalize to provide a closed form for $\mathbb{E}[|A+A|]$ and $\text{Var}(|A+A|)$ for all $p\in (0,1)$ and establish good bounds for $\mathbb{E}[|A+A|]$ and $m_{n\,;\,p}(k)$. We continue to investigate $m_{n\,;\,p}(k)$ by studying $m_p(k) = \lim_{n\to\infty}m_{n\,;\,p}(k)$, proven to exist by Zhao. Lazarev, Miller, and O'Bryant proved that, for $p=1/2$, $m_{1/2}(6)>m_{1/2}(7)<m_{1/2}(8)$. This distribution is not unimodal, and is said to have a "divot" at 7. We report results investigating this divot as $p$ varies, and through both theoretical and numerical analysis, prove that for $p\geq 0.68$ there is a divot at $1$; that is, $m_{p}(0)>m_{p}(1)<m_{p}(2)$. Finally, we extend the graph-theoretic framework originally introduced by Lazarev, Miller, and O'Bryant to correlated sumsets $A+B$ where $B$ is correlated to $A$ by the probabilities $\mathbb{P}(i\in B \mid i\in A) = p_1$ and $\mathbb{P}(i\in B \mid i\not\in A) = p_2$. We provide some preliminary results using the extension of this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源