论文标题

远程状态估算,具有马尔可夫褪色频道的智能传感器

Remote State Estimation with Smart Sensors over Markov Fading Channels

论文作者

Liu, Wanchun, Quevedo, Daniel E., Li, Yonghui, Johansson, Karl Henrik, Vucetic, Branka

论文摘要

我们考虑一个基本的远程状态估计问题,即离散时间线性时间流(LTI)系统。智能传感器将其本地状态估计值转发到远程估计器上,这是在时间相关的$ m $ $ -STATE Markov褪色通道上,其中数据包下降概率是及时的,并且取决于当前褪色的频道状态。我们建立了一个必要且充分的条件,以使远程估计误差协方差为$ρ^2(\ Mathbf {a})ρ(\ Mathbf {dm})<1 $,其中$ρ(\ cdot)$表示Spectral Radius,$ \ \ \ \ m m iantition Mattrix,其中$ρ(\ cdot)$表示,其中$ρ(\ cdot)$表示。 $ \ mathbf {d} $是一个对角线矩阵,包含不同频道状态中的数据包下降概率,而$ \ mathbf {m} $是Markov Channel状态的过渡概率矩阵。为了得出这一结果,我们提出了一种新型的基于估计周期的方法,并提供了矩阵幂的新元素界限。稳定性条件通过数值结果验证,并且比文献中现有的足够条件更有效。我们观察到,根据不同通道状态的数据包下降概率,可以是凸面或凹入的稳定区域,具体取决于过渡概率矩阵$ \ mathbf {m} $。我们的数值结果表明,远程估计的稳定性条件可能会重合具有智能传感器和传统传感器的设置(将原始测量器发送到远程估计器),尽管智能传感器设置可实现更好的估计性能。

We consider a fundamental remote state estimation problem of discrete-time linear time-invariant (LTI) systems. A smart sensor forwards its local state estimate to a remote estimator over a time-correlated $M$-state Markov fading channel, where the packet drop probability is time-varying and depends on the current fading channel state. We establish a necessary and sufficient condition for mean-square stability of the remote estimation error covariance as $ρ^2(\mathbf{A})ρ(\mathbf{DM})<1$, where $ρ(\cdot)$ denotes the spectral radius, $\mathbf{A}$ is the state transition matrix of the LTI system, $\mathbf{D}$ is a diagonal matrix containing the packet drop probabilities in different channel states, and $\mathbf{M}$ is the transition probability matrix of the Markov channel states. To derive this result, we propose a novel estimation-cycle based approach, and provide new element-wise bounds of matrix powers. The stability condition is verified by numerical results, and is shown more effective than existing sufficient conditions in the literature. We observe that the stability region in terms of the packet drop probabilities in different channel states can either be convex or concave depending on the transition probability matrix $\mathbf{M}$. Our numerical results suggest that the stability conditions for remote estimation may coincide for setups with a smart sensor and with a conventional one (which sends raw measurements to the remote estimator), though the smart sensor setup achieves a better estimation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源