论文标题
Fussi-net:融合时空骨骼的意图预测网络
FuSSI-Net: Fusion of Spatio-temporal Skeletons for Intention Prediction Network
论文作者
论文摘要
行人意图识别对于开发强大且安全的自动驾驶(AD)和高级驾驶员援助系统(ADAS)功能非常重要。在这项工作中,我们开发了一个端到端的行人意向框架,在白天和夜间场景中表现良好。我们的框架依赖于异议检测边界框与人姿势的骨骼特征相结合。我们早日,晚和(早期和晚期)融合机制研究骨骼特征并减少误报以提高意图预测性能。早期融合机制的AP为0.89,用于行人意图分类的0.79/0.89的精度/召回率为0.79/0.89。此外,我们提出了三个新指标,以正确评估行人意图系统。根据这些新的评估指标,对意图预测,拟议的端到端网络提供了准确的行人意图,最多比实际的风险操作高达半秒。
Pedestrian intention recognition is very important to develop robust and safe autonomous driving (AD) and advanced driver assistance systems (ADAS) functionalities for urban driving. In this work, we develop an end-to-end pedestrian intention framework that performs well on day- and night- time scenarios. Our framework relies on objection detection bounding boxes combined with skeletal features of human pose. We study early, late, and combined (early and late) fusion mechanisms to exploit the skeletal features and reduce false positives as well to improve the intention prediction performance. The early fusion mechanism results in AP of 0.89 and precision/recall of 0.79/0.89 for pedestrian intention classification. Furthermore, we propose three new metrics to properly evaluate the pedestrian intention systems. Under these new evaluation metrics for the intention prediction, the proposed end-to-end network offers accurate pedestrian intention up to half a second ahead of the actual risky maneuver.