论文标题
阿尔玛(Alma)表征了Z〜5.5星形星系的尘埃温度
ALMA Characterises the Dust Temperature of z ~ 5.5 Star-Forming Galaxies
论文作者
论文摘要
早期宇宙中主要序列星系(Z> 4)的红外光谱能量分布(SED)目前不受限制,因为红外连续观测很耗时,对于大型样本而言是不可行的。我们提出了Atacama大毫米阵列(ALMA)带8个在Z〜5.5处的主要序列星系的观测值,以详细研究其红外SED形状。我们的连续数据(REST-FRAME 110 $ \ RMμm$,接近红外发射的峰值)使我们能够约束亮度加权的灰尘温度和总红外发光性。借助较长波长的数据,我们首次测量这些红移处的发射率指数,以根据粉尘连续体提供对分子气体质量的更稳定的估计。在四个星系中三个星系中三个的频带8观察结果只能通过光学上的薄发射构成100 $ \ rmμm$来对帐。与平均本地星系相比,Z〜5.5(38 $ \ pm $ 8K)处的尘埃峰温度升高,但是,从$ z <4 $的趋势推断出来的趋势外,预测的是5-10k。可以通过向高红移的粉尘丰度(或密度)降低灰尘丰度(或密度)来解释,这会导致峰值处的红外线更薄,从而使外部观察者更可见。从850 $ \ rmμm$ dust Continuum中,我们得出分子气体在$ 10^{10} $和$ 10^{11} \,{\ rm m _ {\ odot}} $中,气体分数(气体超过总质量)为30-80%(气体DEPETETION TIMES的100-220myrs)。总而言之,我们的结果提供了第一个测量的基准SED,以解释早期宇宙中正常的,主要序列星系的未来毫米观察结果。
The infrared spectral energy distributions (SEDs) of main-sequence galaxies in the early universe (z > 4) is currently unconstrained as infrared continuum observations are time consuming and not feasible for large samples. We present Atacama Large Millimetre Array (ALMA) Band 8 observations of four main-sequence galaxies at z ~ 5.5 to study their infrared SED shape in detail. Our continuum data (rest-frame 110$\rm μm$, close to the peak of infrared emission) allows us to constrain luminosity weighted dust temperatures and total infrared luminosities. With data at longer wavelengths, we measure for the first time the emissivity index at these redshifts to provide more robust estimates of molecular gas masses based on dust continuum. The Band 8 observations of three out of four galaxies can only be reconciled with optically thin emission redward of rest-frame 100$\rm μm$. The derived dust peak temperatures at z ~ 5.5 (38$\pm$8K) are elevated compared to average local galaxies, however, 5-10K below what would be predicted from an extrapolation of the trend at $z<4$. This behaviour can be explained by decreasing dust abundance (or density) towards high redshifts, which would cause the infrared SED at the peak to be more optically thin, making hot dust more visible to the external observer. From the 850$\rm μm$ dust continuum, we derive molecular gas masses between $10^{10}$ and $10^{11}\,{\rm M_{\odot}}$ and gas fractions (gas over total mass) of 30-80% (gas depletion times of 100-220Myrs). All in all, our results provide a first measured benchmark SED to interpret future millimetre observations of normal, main-sequence galaxies in the early Universe.