论文标题

车辆网络的贝叶斯预测范围:一种低空的关节雷达通信方法

Bayesian Predictive Beamforming for Vehicular Networks: A Low-overhead Joint Radar-Communication Approach

论文作者

Yuan, Weijie, Liu, Fan, Masouros, Christos, Yuan, Jinhong, Ng, Derrick Wing Kwan, Gonzalez-Prelcic, Nuria

论文摘要

双功能雷达通信(DFRC)系统的开发,可以将车辆定位和跟踪与车辆通信相结合,将导致更有效的未来车辆网络。在本文中,我们在DFRC系统的背景下开发了一种预测性波束形成方案。我们考虑一个系统模型,其中路边单元根据DFRC信号的回声估算车辆的运动参数并预测车辆的运动参数。与传统的基于反馈的光束跟踪方法相比,提出的方法可以降低信号开销并提高准确性。为了准确估计车辆的运动参数实时,我们提出了一个基于因子图的新消息传递算法,该算法几乎可以最佳解决方案,以最大值A后验估计。然后,基于建立通信链路的预测角度设计光束形成器。}通过使用适当的近似值,可以以封闭形式得出所有消息,从而降低复杂性。仿真结果表明,就估计和通信性能而言,提出的基于DFRC的波束形成方案优于基于反馈的方法。此外,传递算法的提出消息达到了基于高复杂性粒子方法的相似性能。

The development of dual-functional radar-communication (DFRC) systems, where vehicle localization and tracking can be combined with vehicular communication, will lead to more efficient future vehicular networks. In this paper, we develop a predictive beamforming scheme in the context of DFRC systems. We consider a system model where the road-side units estimates and predicts the motion parameters of vehicles based on the echoes of the DFRC signal. Compared to the conventional feedback-based beam tracking approaches, the proposed method can reduce the signaling overhead and improve the accuracy. To accurately estimate the motion parameters of vehicles in real-time, we propose a novel message passing algorithm based on factor graph, which yields near optimal solution to the maximum a posteriori estimation. The beamformers are then designed based on the predicted angles for establishing the communication links.}With the employment of appropriate approximations, all messages on the factor graph can be derived in a closed-form, thus reduce the complexity. Simulation results show that the proposed DFRC based beamforming scheme is superior to the feedback-based approach in terms of both estimation and communication performance. Moreover, the proposed message passing algorithm achieves a similar performance of the high-complexity particle-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源