论文标题
在动态搜索空间中使用有限的GPU时间优化神经体系结构搜索:一种基因表达编程方法
Optimizing Neural Architecture Search using Limited GPU Time in a Dynamic Search Space: A Gene Expression Programming Approach
论文作者
论文摘要
在过去的几年中,有效地识别人和物体,对感兴趣的区域的分割以及图像,文本,音频和视频中相关数据的提取正在发生相当大的发展,而深度学习方法以及计算资源的最新改进,为这一成就做出了巨大贡献。尽管其出色的潜力,但有效的体系结构和模块的发展需要专家知识和可用的资源时间。在本文中,我们提出了一种基于进化的神经体系结构搜索方法,以在仅24 GPU小时内在动态搜索空间中有效发现卷积模型。凭借其有效的搜索环境和表型表示,基因表达编程适用于网络的细胞生成。尽管GPU资源时间和广泛的搜索空间有限,但我们的提案与手动设计的卷积网络以及NAS生成的提案相似,甚至击败了类似的基于进化的NAS NAS的作品。不同运行中最好的单元格是稳定的结果,CIFAR-10数据集的平均误差为2.82%(最佳模型的误差为2.67%),CIFAR-100(最佳模型为18.16%)为18.83%。对于在移动设置中的Imagenet,我们的最佳模型分别达到了前1名和前5个错误,分别为29.51%和10.37%。尽管据报道,基于进化的NAS工作需要大量的GPU时间进行体系结构搜索,但我们的方法在很少的时间内获得了有希望的结果,鼓励基于进化的NAS进行进一步的实验,以改进搜索和网络表示。
Efficient identification of people and objects, segmentation of regions of interest and extraction of relevant data in images, texts, audios and videos are evolving considerably in these past years, which deep learning methods, combined with recent improvements in computational resources, contributed greatly for this achievement. Although its outstanding potential, development of efficient architectures and modules requires expert knowledge and amount of resource time available. In this paper, we propose an evolutionary-based neural architecture search approach for efficient discovery of convolutional models in a dynamic search space, within only 24 GPU hours. With its efficient search environment and phenotype representation, Gene Expression Programming is adapted for network's cell generation. Despite having limited GPU resource time and broad search space, our proposal achieved similar state-of-the-art to manually-designed convolutional networks and also NAS-generated ones, even beating similar constrained evolutionary-based NAS works. The best cells in different runs achieved stable results, with a mean error of 2.82% in CIFAR-10 dataset (which the best model achieved an error of 2.67%) and 18.83% for CIFAR-100 (best model with 18.16%). For ImageNet in the mobile setting, our best model achieved top-1 and top-5 errors of 29.51% and 10.37%, respectively. Although evolutionary-based NAS works were reported to require a considerable amount of GPU time for architecture search, our approach obtained promising results in little time, encouraging further experiments in evolutionary-based NAS, for search and network representation improvements.