论文标题

基于学习的量子错误缓解

Learning-based quantum error mitigation

论文作者

Strikis, Armands, Qin, Dayue, Chen, Yanzhu, Benjamin, Simon C., Li, Ying

论文摘要

如果NISQ-ers量子计算机要执行有用的任务,则需要采用强大的错误缓解技术。准概率方法可以以额外的电路执行成本为代价提供完美的错误补偿,前提是,误差模型的性质已完全理解,并在空间和时间上都充分局部。不幸的是,这些条件具有挑战性。在这里,我们提出了一种可以从头开始学习适当补偿策略的方法。我们的训练过程使用主要电路的多种变体,其中所有非克利福德门都用有效的古典模拟的门代替。该过程产生的配置与实际系统中的噪声相比,其非克利福德门集与噪声相比。提出了一系列学习策略后,我们通过真实的量子硬件(IBM设备)和精确的不完美量子计算机展示了该技术的力量。该系统遭受一系列噪声严重性和类型的范围,包括空间和时间相关的变体。在所有情况下,协议都成功地适应了噪声,并在很大程度上降低了噪声。

If NISQ-era quantum computers are to perform useful tasks, they will need to employ powerful error mitigation techniques. Quasi-probability methods can permit perfect error compensation at the cost of additional circuit executions, provided that the nature of the error model is fully understood and sufficiently local both spatially and temporally. Unfortunately these conditions are challenging to satisfy. Here we present a method by which the proper compensation strategy can instead be learned ab initio. Our training process uses multiple variants of the primary circuit where all non-Clifford gates are substituted with gates that are efficient to simulate classically. The process yields a configuration that is near-optimal versus noise in the real system with its non-Clifford gate set. Having presented a range of learning strategies, we demonstrate the power of the technique both with real quantum hardware (IBM devices) and exactly-emulated imperfect quantum computers. The systems suffer a range of noise severities and types, including spatially and temporally correlated variants. In all cases the protocol successfully adapts to the noise and mitigates it to a high degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源