论文标题

有限和无限尺寸中的分布依赖性随机差延迟方程

Distribution-Dependent Stochastic Differential Delay Equations in finite and infinite dimensions

论文作者

Heinemann, Rico

论文摘要

我们证明了表格\ begin {equation*} \ mathrm {d} x(t)= b(t,x_t,x_t,\ mathcal {l} _ {x_t} _ {x_t}) σ(t,x_t,\ Mathcal {l} _ {x_t})\ Mathrm {d} w(t)W(t)\ end {equication*},如果系数满足某些单调性假设,则在有限的dimenite dimemential状态空间中具有独特的(强)溶液。

We prove that distribution dependent (also called McKean--Vlasov) stochastic delay equations of the form \begin{equation*} \mathrm{d}X(t)= b(t,X_t,\mathcal{L}_{X_t})\mathrm{d}t+ σ(t,X_t,\mathcal{L}_{X_t})\mathrm{d}W(t) \end{equation*} have unique (strong) solutions in finite as well as infinite dimensional state spaces if the coefficients fulfill certain monotonicity assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源