论文标题

在动态图中用于异常检测的结构时间图神经网络

Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs

论文作者

Cai, Lei, Chen, Zhengzhang, Luo, Chen, Gui, Jiaping, Ni, Jingchao, Li, Ding, Chen, Haifeng

论文摘要

在动态图中检测异常是至关重要的任务,在安全,金融和社交媒体等领域中有许多实际应用。以前的基于网络嵌入的方法主要集中于学习良好的节点表示形式,而在很大程度上忽略了动态图中与目标节点相关的子图结构变化。在本文中,我们提出了strgnn,这是一种用于检测动态图中异常边缘的端到端结构图神经网络模型。特别是,我们首先提取以目标边缘为中心的$ h $ -HOP封闭子图,并提出节点标记功能,以识别每个节点在子图中的作用。然后,我们利用图形卷积操作和分类层从每个快照/时间戳提取固定尺寸的功能。根据提取的特征,我们利用封闭式复发单元(GRU)捕获时间信息以进行异常检测。在六个基准数据集和一个真实的企业安全系统上进行了广泛的实验,证明了Strgnn的有效性。

Detecting anomalies in dynamic graphs is a vital task, with numerous practical applications in areas such as security, finance, and social media. Previous network embedding based methods have been mostly focusing on learning good node representations, whereas largely ignoring the subgraph structural changes related to the target nodes in dynamic graphs. In this paper, we propose StrGNN, an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs. In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph. Then, we leverage graph convolution operation and Sortpooling layer to extract the fixed-size feature from each snapshot/timestamp. Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection. Extensive experiments on six benchmark datasets and a real enterprise security system demonstrate the effectiveness of StrGNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源