论文标题

人类活动识别的传感器数据:特征表示和基准测试

Sensor Data for Human Activity Recognition: Feature Representation and Benchmarking

论文作者

Alves, Flávia, Gairing, Martin, Oliehoek, Frans A., Do, Thanh-Toan

论文摘要

人类活动识别(HAR)的领域着重于获取和分析从监视设备(例如传感器)捕获的数据。该领域内有广泛的应用;例如,辅助生活,安全监视和智能运输。在HAR中,活动识别模型的开发取决于这些设备捕获的数据以及用于分析它们的方法,这直接影响了性能指标。在这项工作中,我们解决了使用不同的机器学习(ML)技术准确识别人类活动的问题。我们根据连续发生的观测值提出了一个新功能表示,并将其与先前使用的特征表示使用广泛的分类方法进行比较。实验结果表明,基于提议的表示的技术优于基准,并且对于高度和频繁的作用都可以提高基准。我们还研究了进一步的特征及其预处理技术如何影响性能结果,从而导致人类活动识别数据集的最新精度。

The field of Human Activity Recognition (HAR) focuses on obtaining and analysing data captured from monitoring devices (e.g. sensors). There is a wide range of applications within the field; for instance, assisted living, security surveillance, and intelligent transportation. In HAR, the development of Activity Recognition models is dependent upon the data captured by these devices and the methods used to analyse them, which directly affect performance metrics. In this work, we address the issue of accurately recognising human activities using different Machine Learning (ML) techniques. We propose a new feature representation based on consecutive occurring observations and compare it against previously used feature representations using a wide range of classification methods. Experimental results demonstrate that techniques based on the proposed representation outperform the baselines and a better accuracy was achieved for both highly and less frequent actions. We also investigate how the addition of further features and their pre-processing techniques affect performance results leading to state-of-the-art accuracy on a Human Activity Recognition dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源