论文标题

BCC金属中的氢聚集:原子原状和强应力各向异性

Hydrogen clustering in bcc metals: atomic origin and strong stress anisotropy

论文作者

Hou, Jie, Kong, Xiang-Shan, Liu, C. S., Song, Jun

论文摘要

对于许多工业应用,氢(H)诱导的金属损伤一直是长期存在的祸患。这种损伤的一种形式与H聚类有关,原子原点仍然存在,尤其是对于非氢化物形成金属。在这项工作中,我们系统地研究了由W,FE,MO和CR代表的BCC金属中的H聚类行为,结合了第一原理计算,原子和蒙特卡罗模拟。 H聚类已被证明在能量上是有利的,并且可以通过各向异性应力场强烈促进,该场沿着<001>晶体方向之一的拉伸部分主导。我们表明,基于H形成体积张量的连续模型可以很好地预测应力效应,并且H聚集在边缘位置上是热力学上的可能性,这在H浓度较低的Hanohydride形成中证明了HANOHYDRIDE的形成。此外,应激效应的各向异性在脱位周围的纳米氢化物形态中很好地反映了,纳米氢化物的生长以薄的血小板结构的形式出现,从而最大程度地提高了一种<001>。特别是,<001>类型的边缘位错具有最大化的拉伸成分,已被证明在促进H聚集方面非常有效,因此预计在BCC金属中与最近的实验观察一致,在BCC金属的H聚集中起重要作用。这项工作明确,定量地阐明了压力效应对H能量和H聚类行为的各向异性性质,从而为理解H诱导金属损害的机械见解提供了至关重要的洞察力。

Hydrogen (H) induced damage in metals has been a long-standing woe for many industrial applications. One form of such damage is linked to H clustering, for which the atomic origin remains contended, particularly for non-hydride forming metals. In this work, we systematically studied H clustering behavior in bcc metals represented by W, Fe, Mo, and Cr, combining first-principles calculations, atomistic and Monte Carlo simulations. H clustering has been shown to be energetically favorable, and can be strongly facilitated by anisotropic stress field, dominated by the tensile component along one of the <001> crystalline directions. We showed that the stress effect can be well predicted by the continuum model based on H formation volume tensor, and that H clustering is thermodynamically possible at edge dislocations, evidenced by nanohydride formation at rather low levels of H concentration. Moreover, anisotropy in the stress effect is well reflected in nanohydride morphology around dislocations, with nanohydride growth occurring in the form of thin platelet structures that maximize one <001> tension. In particular, the <001> type edge dislocation, with the <001> tensile component maximized, has been shown to be highly effective in facilitating H aggregation, thus expected to play an important role in H clustering in bcc metals, in close agreement with recent experimental observations. This work explicitly and quantitatively clarifies the anisotropic nature of stress effect on H energetics and H clustering behaviors, offering mechanistic insights critical towards understanding H-induced damages in metals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源