论文标题
定期介质中的扩散NMR:有效的计算和光谱特性
Diffusion NMR in periodic media: efficient computation and spectral properties
论文作者
论文摘要
Bloch-torrey方程控制了扩散磁共振成像中横向磁化的演变,其中两种机制正在发挥作用:自旋的扩散(Laplacian项)及其在磁场梯度(假想势术语)中的进动。在本文中,我们在周期性的介质中研究了该方程:在晶格的节点上重复的晶胞。尽管该方程的梯度项并不是晶格翻译不变的,但是可以通过狭窄的脉冲替换连续的时梯度轮廓来在单个单位单元格中分析该方程。在此近似值中,分离进动和扩散的效果,并将问题降低到对具有伪周期边界条件的一系列扩散方程的研究。这种表示可以有效地计算数值计算以及对周期介质中信号形成的新理论见解。特别是,我们研究了Bloch-torrey操作员的本征和征值。我们展示了本征模的定位与频谱中的分支点有关,并讨论低梯度渐近行为。讨论了近似的有效性范围;有趣的是,该方法在高梯度下更为准确,更有效,因此是对低梯度最准确的传统数值方法的重要补充工具。
The Bloch-Torrey equation governs the evolution of the transverse magnetization in diffusion magnetic resonance imaging, where two mechanisms are at play: diffusion of spins (Laplacian term) and their precession in a magnetic field gradient (imaginary potential term). In this paper, we study this equation in a periodic medium: a unit cell repeated over the nodes of a lattice. Although the gradient term of the equation is not invariant by lattice translations, the equation can be analyzed within a single unit cell by replacing a continuous-time gradient profile by narrow pulses. In this approximation, the effects of precession and diffusion are separated and the problem is reduced to the study of a sequence of diffusion equations with pseudo-periodic boundary conditions. This representation allows for efficient numerical computations as well as new theoretical insights into the formation of the signal in periodic media. In particular, we study the eigenmodes and eigenvalues of the Bloch-Torrey operator. We show how the localization of eigenmodes is related to branching points in the spectrum and we discuss low- and high-gradient asymptotic behaviors. The range of validity of the approximation is discussed; interestingly the method turns out to be more accurate and efficient at high gradient, being thus an important complementary tool to conventional numerical methods that are most accurate at low gradients.