论文标题
Rydberg原子中的非绝热非绝热几何量子计算
Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms
论文作者
论文摘要
已经开发了非绝热的几何量子计算(NGQC),以实现快速而强大的几何门。但是,常规的NGQC是所有大门都是按时间的时间进行的,无论是由于循环条件的限制,几何旋转角度还是小。在这里,我们提出了一个非常规的方案,称为非绝热非绝热几何量子计算(NNGQC),可以通过非循环的非阿贝尔几何阶段构建任意的单一几何栅极。因此,该方案使得可以加速已实现的几何闸门,从而产生了环境反应的影响。此外,这种可扩展的方案可以应用不变的量子平台,例如超导Qubit和Rydberg原子。具体而言,对于单量栅极,我们在中性原子系统中使用实用参数进行模拟,以显示NNGQC的鲁棒性,并使用最近的实验参数与NGQC进行比较,以表明NNGQC可以显着抑制脱碳误差。此外,我们还证明了非平凡的两量几何门可以通过当前实验技术中的非常规Rydberg封锁制度来欺骗。因此,我们的策略为快速和稳健的基于中性原子的量子计算提供了一种有希望的方法。
Nonadiabatic geometric quantum computation (NGQC) has been developed to realize fast and robust geometric gate. However, the conventional NGQC is that all of the gates are performed with exactly the sameamount of time, whether the geometric rotation angle is large or small, due to the limitation of cyclic condition. Here, we propose an unconventional scheme, called nonadiabatic noncyclic geometric quantum computation(NNGQC), that arbitrary single- and two-qubit geometric gate can be constructed via noncyclic non-Abeliangeometric phase. Consequently, this scheme makes it possible to accelerate the implemented geometric gatesagainst the effects from the environmental decoherence. Furthermore, this extensible scheme can be applied invarious quantum platforms, such as superconducting qubit and Rydberg atoms. Specifically, for single-qubit gate,we make simulations with practical parameters in neutral atom system to show the robustness of NNGQC and also compare with NGQC using the recent experimental parameters to show that the NNGQC can significantly suppress the decoherence error. In addition, we also demonstrate that nontrivial two-qubit geometric gate can berealized via unconventional Rydberg blockade regime within current experimental technologies. Therefore, ourscheme provides a promising way for fast and robust neutral-atom-based quantum computation.