论文标题
间隔功能,托勒密,距离遗传性,桥接图和公理表征
The Interval function, Ptolemaic, distance hereditary, bridged graphs and axiomatic characterizations
论文作者
论文摘要
在本文中,我们考虑了连接图$ g $的间隔功能上的某些类型的中心公理$ i_g $。我们表征了$ i_g $满足这些公理的一类图表。我们表征的图表包括重要的托勒密图和托勒密图的一些适当的超类:距离遗传图和桥接图。我们还使用称为\ emph {transit函数}的任意函数来提供这些图形类别的间隔功能的公理表征。
In this paper we consider certain types of betweenness axioms on the interval function $I_G$ of a connected graph $G$. We characterize the class of graphs for which $I_G$ satisfy these axioms. The class of graphs that we characterize include the important class of Ptolemaic graphs and some proper superclasses of Ptolemaic graphs: the distance hereditary graphs and the bridged graphs. We also provide axiomatic characterizations of the interval function of these classes of graphs using an arbitrary function known as \emph{transit function}.