论文标题

纵向健康数据的患者相似性分析

Patient Similarity Analysis with Longitudinal Health Data

论文作者

Allam, Ahmed, Dittberner, Matthias, Sintsova, Anna, Brodbeck, Dominique, Krauthammer, Michael

论文摘要

医疗保健专业人员长期以来一直在使用计算机的巨大处理能力来发现锁定在电子健康记录中的新事实和医学知识。这些庞大的医疗档案包含有关医疗访问,测试和程序以及结果的时间分辨信息,这些信息共同构成了个体的患者旅行。通过评估这些旅程之间的相似性,可以发现具有共同健康结果的常见疾病轨迹集群。将患者的旅程分配到特定的集群中可能是个性化结果预测和治疗选择的基础。此过程是一个非平凡的计算问题,因为它需要比较具有多维和多模式特征的患者数据,这些特征在不同的时间和分辨率下被捕获。在这篇综述中,我们提供了与纵向数据相似性分析中使用的工具和方法的全面概述,并讨论了其改善临床决策的潜力。

Healthcare professionals have long envisioned using the enormous processing powers of computers to discover new facts and medical knowledge locked inside electronic health records. These vast medical archives contain time-resolved information about medical visits, tests and procedures, as well as outcomes, which together form individual patient journeys. By assessing the similarities among these journeys, it is possible to uncover clusters of common disease trajectories with shared health outcomes. The assignment of patient journeys to specific clusters may in turn serve as the basis for personalized outcome prediction and treatment selection. This procedure is a non-trivial computational problem, as it requires the comparison of patient data with multi-dimensional and multi-modal features that are captured at different times and resolutions. In this review, we provide a comprehensive overview of the tools and methods that are used in patient similarity analysis with longitudinal data and discuss its potential for improving clinical decision making.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源