论文标题

学习降低PDE订单的可组合能量代理

Learning Composable Energy Surrogates for PDE Order Reduction

论文作者

Beatson, Alex, Ash, Jordan T., Roeder, Geoffrey, Xue, Tianju, Adams, Ryan P.

论文摘要

元材料是一类重要的工程材料类别,其中复杂的宏观行为(无论是电磁,热还是机械)都来自模块化子结构。这些材料的仿真和优化在计算上具有挑战性,因为丰富的子结构需要高保真有限元网格来解决管理PDE。为了解决这个问题,我们利用参数模块化结构来学习组件级替代物,从而实现更便宜的高保真模拟。我们使用神经网络在给定边界条件的组件中对存储的势能进行建模。这产生了一个结构化的预测任务:宏观行为是由系统总势能的最小化确定的,可以通过组成这些替代模型来近似。因此,组合能替代物可以允许在组分边界的减少基础上进行模拟。避免了整个结构的昂贵地面真实模拟,因为训练数据是通过对单个组件进行有限元分析而产生的。使用数据集聚集来选择训练边界条件使我们能够学习能量替代物,从而在组合时产生准确的宏观行为,从而加速对参数元物质的模拟。

Meta-materials are an important emerging class of engineered materials in which complex macroscopic behaviour--whether electromagnetic, thermal, or mechanical--arises from modular substructure. Simulation and optimization of these materials are computationally challenging, as rich substructures necessitate high-fidelity finite element meshes to solve the governing PDEs. To address this, we leverage parametric modular structure to learn component-level surrogates, enabling cheaper high-fidelity simulation. We use a neural network to model the stored potential energy in a component given boundary conditions. This yields a structured prediction task: macroscopic behavior is determined by the minimizer of the system's total potential energy, which can be approximated by composing these surrogate models. Composable energy surrogates thus permit simulation in the reduced basis of component boundaries. Costly ground-truth simulation of the full structure is avoided, as training data are generated by performing finite element analysis with individual components. Using dataset aggregation to choose training boundary conditions allows us to learn energy surrogates which produce accurate macroscopic behavior when composed, accelerating simulation of parametric meta-materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源