论文标题
纳米结构薄膜的可控的光态悬浮,用于近距离飞行
Controlled photophoretic levitation of nanostructured thin films for near-space flight
论文作者
论文摘要
我们报告了宏观聚合物膜的轻度驱动悬浮,其底部表面经过设计以最大程度地提高热容积系数。具体而言,我们悬浮的厘米尺度磁盘由商业0.5微米 - 厚的薄膜膜制成,一侧用碳纳米管涂有碳纳米管。当用与天然阳光相当的光强度照亮时,聚合物盘会加热并与入射气体分子在顶部和底部不同,从而产生净后坐力。在0.3阶的相对对应于Knudsen数字的气压上,这种升力力是最大化的,相应地,我们观察到在真空腔中的0.6 cm直径磁盘在10到30 pa之间的悬浮盘的悬浮。我们经过实验验证的理论模型预测,升力力可能是膜的重量的很多倍,可在50-100公里的高度上,在上层大气中,有效载荷可用于阳光供电的低成本微磷脂的有效载荷。
We report light-driven levitation of macroscopic polymer films whose bottom surface is engineered to maximize the thermal accommodation coefficient. Specifically, we levitated centimeter-scale disks made of commercial 0.5-micron-thick mylar film coated with carbon nanotubes on one side. When illuminated with light intensity comparable to natural sunlight, the polymer disk heats up and interacts with incident gas molecules differently on the top and bottom sides, producing a net recoil force. This lift force is maximized at gas pressures corresponding to Knudsen number on the order of 0.3, and correspondingly, we observed the levitation of 0.6-cm-diameter disks in a vacuum chamber at pressures between 10 and 30 Pa. Moreover, we controlled the flight of the disks using a shaped beam that optically trapped the levitating disks. Our experimentally validated theoretical model predicts that the lift forces can be many times the weight of the films, allowing payloads of up to 10 milligrams for sunlight-powered low-cost microflyers in the upper atmosphere at altitudes of 50-100 km.