论文标题
LDPC代码以点对点和多个访问通信的有限障碍物和错误实现分析
Finite-Blocklength and Error-Exponent Analyses for LDPC Codes in Point-to-Point and Multiple Access Communication
论文作者
论文摘要
本文将误差态和分散式分析应用于在点对点通道(PPC)和多个访问通道(MAC)上的低密度奇偶校验检查(LDPC)代码的有限障碍可实现性界限。误差分析将Gallager的错误指数应用于MAC中可实现的对称和不对称率。分散式分析始于从随机代码合奏与I.I.D.的随机编码结合(RCU)的概括。随机代码合奏的代码字可以在统计上取决于该组合;由于随机线性代码(如随机LDPC代码)的代码字是有用的,因此很有用。 RCU结合的应用可改善I.I.D. LDPC代码的随机代码和新的有限块长度误差和可实现性结果。对于离散的无内存通道,这些结果表明,LDPC代码实现一阶和二阶性能,最适合PPC,并且与Mac的最佳优点结果相同。
This paper applies error-exponent and dispersion-style analyses to derive finite-blocklength achievability bounds for low-density parity-check (LDPC) codes over the point-to-point channel (PPC) and multiple access channel (MAC). The error-exponent analysis applies Gallager's error exponent to bound achievable symmetrical and asymmetrical rates in the MAC. The dispersion-style analysis begins with a generalization of the random coding union (RCU) bound from random code ensembles with i.i.d. codewords to random code ensembles in which codewords may be statistically dependent; this generalization is useful since the codewords of random linear codes such as random LDPC codes are dependent. Application of the RCU bound yields improved finite-blocklength error bounds and asymptotic achievability results for i.i.d. random codes and new finite-blocklength error bounds and achievability results for LDPC codes. For discrete, memoryless channels, these results show that LDPC codes achieve first- and second-order performance that is optimal for the PPC and identical to the best-prior results for the MAC.