论文标题
磁通,扭曲的摩托车,单片和$ u(1)$ supermbranes
Fluxes, Twisted tori, Monodromy and $U(1)$ Supermembranes
论文作者
论文摘要
我们表明,$ d = 11 $ supermmbrane理论(M2-Brane)在$ M_9 \ times t^2 $目标空间上被压缩,并带有常数通量$ c _ {\ pm} $自然结合了扭曲的圆环的几何结构。我们将M2-Brane理论扩展到扭曲的圆环束上的公式。它始终在M2-Brane的世界体积上进行纤维。它也可以解释为具有与磁通量相关的非平凡$ u(1)$连接的圆环捆绑包。结构组$ g $是保存差异的区域。圆环束是根据与$π_{0}(g)= sl(2,z)$相关的同位素类别相关的单型套件定义的,并由$ sl(2,z)$的$ sl(2,z)$的共同体进行了分类。该理论的频谱纯粹是离散的,因为恒定通量会引起超对称代数的中心电荷,并且对哈密顿量的修改会导致频谱离散,并具有有限的多样性。该理论是在与身份相关的符号切除态下不变的,这与保证该理论的U偶发不变性有关。该理论的哈密顿量展示了有趣的新$ u(1)$ gauge和全球对称性,这是由Symploctomorphim转换引起的世界事容的。我们用非平凡的中央电荷明确构建超对称代数。我们表明,零模式与非零的模式解散。非零模式代数对应于一个巨大的超级巨头,该超级巨头保留了原始超对称性的$ 1/2 $或$ 1/4 $,具体取决于所考虑的状态。
We show that the $D=11$ Supermembrane theory (M2-brane) compactified on a $M_9 \times T^2$ target space, with constant fluxes $C_{\pm}$ naturally incorporates the geometrical structure of a twisted torus. We extend the M2-brane theory to a formulation on a twisted torus bundle. It is consistently fibered over the world volume of the M2-brane. It can also be interpreted as a torus bundle with a nontrivial $U(1)$ connection associated to the fluxes. The structure group $G$ is the area preserving diffeomorphisms. The torus bundle is defined in terms of the monodromy associated to the isotopy classes of symplectomorphisms with $π_{0} (G) = SL(2,Z)$, and classified by the coinvariants of the subgroups of $SL(2,Z)$. The spectrum of the theory is purely discrete since the constant flux induces a central charge on the supersymmetric algebra and a modification on the Hamiltonian which renders the spectrum discrete with finite multiplicity. The theory is invariant under symplectomorphisms connected and non connected to the identity, a result relevant to guaranteed the U-dual invariance of the theory. The Hamiltonian of the theory exhibits interesting new $U(1)$ gauge and global symmetries on the worldvolume induced by the symplectomorphim transformations. We construct explicitly the supersymmetric algebra with nontrivial central charges. We show that the zero modes decouple from the nonzero ones. The nonzero mode algebra corresponds to a massive superalgebra that preserves either $1/2$ or $1/4$ of the original supersymmetry depending on the state considered.