论文标题

通过像素和输出水平对齐的语义分割的超分辨率域适应网络

Super-Resolution Domain Adaptation Networks for Semantic Segmentation via Pixel and Output Level Aligning

论文作者

Wu, Junfeng, Tang, Zhenjie, Xu, Congan, Liu, Enhai, Gao, Long, Yan, Wenjun

论文摘要

最近,无监督的域适应性(UDA)引起了越来越多的关注,以解决语义分割任务中的域移位问题。尽管以前的UDA方法已经达到了有希望的性能,但它们仍然遭受源域和目标域之间的分布差距,尤其是遥感图像中的分辨率差异。为了解决这个问题,本文设计了一个新颖的端到端语义分割网络,即超分辨率域自适应网络(SRDA-NET)。 SRDA-NET可以同时完成超分辨率任务和域的适应任务,从而满足了通常涉及各种分辨率图像的遥感图像的语义分割的要求。所提出的SRDA-NET包括三个部分:超分辨率和分割(SRS)模型,该模型侧重于恢复高分辨率图像和预测分段图,一个像素级域分类器(PDC),用于确定哪个域属于哪个域属于属于pixel的pixel pincution pixel with pixel progution。通过使用两个分类器共同优化SRS,提出的方法不仅可以消除源域和目标域之间的分辨率差异,而且可以提高语义分割任务的性能。两个具有不同分辨率的遥感数据集的实验结果表明,SRDA-NET在准确性和视觉质量方面对某些最先进的方法表现出色。代码和型号可在https://github.com/tangzhenjie/srda-net上找到。

Recently, Unsupervised Domain Adaptation (UDA) has attracted increasing attention to address the domain shift problem in the semantic segmentation task. Although previous UDA methods have achieved promising performance, they still suffer from the distribution gaps between source and target domains, especially the resolution discrepany in the remote sensing images. To address this problem, this paper designs a novel end-to-end semantic segmentation network, namely Super-Resolution Domain Adaptation Network (SRDA-Net). SRDA-Net can simultaneously achieve the super-resolution task and the domain adaptation task, thus satisfying the requirement of semantic segmentation for remote sensing images which usually involve various resolution images. The proposed SRDA-Net includes three parts: a Super-Resolution and Segmentation (SRS) model which focuses on recovering high-resolution image and predicting segmentation map, a Pixel-level Domain Classifier (PDC) for determining which domain the pixel belongs to, and an Output-space Domain Classifier (ODC) for distinguishing which domain the pixel contribution is from. By jointly optimizing SRS with two classifiers, the proposed method can not only eliminates the resolution difference between source and target domains, but also improve the performance of the semantic segmentation task. Experimental results on two remote sensing datasets with different resolutions demonstrate that SRDA-Net performs favorably against some state-of-the-art methods in terms of accuracy and visual quality. Code and models are available at https://github.com/tangzhenjie/SRDA-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源