论文标题
流体结构与$ h(\ text {div})$ - 合格有限元素的互动
Fluid-structure interaction with $H(\text{div})$-conforming finite elements
论文作者
论文摘要
在本文中,提出了(高阶)$ h(\ text {div})$的新颖应用 - 呈现了整体液结构相互作用(FSI)的混合不连续的galerkin有限元方法。任意的拉格朗日欧拉(ALE)描述是以$ h(\ text {div})$的形式得出的 - 符合有限的元素,包括Piola变换,产生了确切的差异无差的流体速度解决方案。通过Turek和Hron提出的基准问题[50]证明了出现的方法。通过HP进行策略,奇异性和边界层被克服,导致最佳空间收敛速率。
In this paper a novel application of the (high-order) $H(\text{div})$-conforming Hybrid Discontinuous Galerkin finite element method for monolithic fluid-structure interaction (FSI) is presented. The Arbitrary Lagrangian Eulerian (ALE) description is derived for $H(\text{div})$-conforming finite elements including the Piola transformation, yielding exact divergence free fluid velocity solutions. The arising method is demonstrated by means of the benchmark problems proposed by Turek and Hron [50]. With hp-refinement strategies singularities and boundary layers are overcome leading to optimal spatial convergence rates.