论文标题

$ K $ - 排序,统计和模式

$k$-arrangements, statistics and patterns

论文作者

Fu, Shishuo, Han, Guo-Niu, Lin, Zhicong

论文摘要

$ k $ - 排序是固定点为$ k $颜色的排列。我们证明了与$ k $分组的统计和模式有关的列举结果,证实了Blitvić和Steingrímsson的几个猜想。特别是,他们关于毁灭形式下降数量和$ k $ - 排序的置换形式的猜想之一是通过两种有趣的方式加强的。此外,作为所谓降低值定理的一种应用,我们计算了对称对称的Eulerian统计数据的生成函数,而不是我们的研究中产生的排列。

The $k$-arrangements are permutations whose fixed points are $k$-colored. We prove enumerative results related to statistics and patterns on $k$-arrangements, confirming several conjectures by Blitvić and Steingrímsson. In particular, one of their conjectures regarding the equdistribution of the number of descents over the derangement form and the permutation form of $k$-arrangements is strengthened in two interesting ways. Moreover, as one application of the so-called Decrease Value Theorem, we calculate the generating function for a symmetric pair of Eulerian statistics over permutations arising in our study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源