论文标题

循环贝叶斯攻击图:一种系统的计算方法

Cyclic Bayesian Attack Graphs: A Systematic Computational Approach

论文作者

Matthews, Isaac, Mace, John, Soudjani, Sadegh, van Moorsel, Aad

论文摘要

攻击图通常用于分析中型至大型网络的安全性。基于网络的扫描和漏洞的可能性信息,攻击图可以转换为贝叶斯攻击图(袋)。这些袋子用于评估安全控制如何影响网络以及拓扑变化如何影响安全性。这些自动生成的袋子的挑战是自然出现循环,这使得无法使用贝叶斯网络理论计算状态概率。在本文中,我们提供了一种系统的方法来分析和执行循环贝叶斯攻击图的计算。 %因此提供了一种通用方法来处理周期,并统一了贝叶斯攻击图的理论。我们的方法首先正式介绍了贝叶斯攻击图的两个常用版本,并比较了它们的表现力。然后,我们根据组合逻辑电路对贝叶斯攻击图进行了解释,这有助于对周期的直观吸引人的系统处理。我们证明了关联的逻辑电路的属性,并提出了一种计算状态概率而不更改攻击图的算法(例如,删除弧以删除周期)。此外,我们的算法无需识别其类型,无缝处理所有周期。一组使用合成创建网络的实验演示了具有数百台机器的计算机网络上算法的可扩展性,每台机器都有多个漏洞。

Attack graphs are commonly used to analyse the security of medium-sized to large networks. Based on a scan of the network and likelihood information of vulnerabilities, attack graphs can be transformed into Bayesian Attack Graphs (BAGs). These BAGs are used to evaluate how security controls affect a network and how changes in topology affect security. A challenge with these automatically generated BAGs is that cycles arise naturally, which make it impossible to use Bayesian network theory to calculate state probabilities. In this paper we provide a systematic approach to analyse and perform computations over cyclic Bayesian attack graphs. %thus providing a generic approach to handle cycles as well as unifying the theory of Bayesian attack graphs. Our approach first formally introduces two commonly used versions of Bayesian attack graphs and compares their expressiveness. We then present an interpretation of Bayesian attack graphs based on combinational logic circuits, which facilitates an intuitively attractive systematic treatment of cycles. We prove properties of the associated logic circuit and present an algorithm that computes state probabilities without altering the attack graphs (e.g., remove an arc to remove a cycle). Moreover, our algorithm deals seamlessly with all cycles without the need to identify their types. A set of experiments using synthetically created networks demonstrates the scalability of the algorithm on computer networks with hundreds of machines, each with multiple vulnerabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源