论文标题
线性群体的全球中央扩展超过了非共同劳伦的戒指,相关的$ k_1 $ -groups和$ k_2 $ -groups
Universal central extensions of linear groups over rings of non-commutative Laurent polynomials, associated $K_1$-groups and $K_2$-groups
论文作者
论文摘要
我们证明,非共同laurent polyenmials $d_τ$的线性组具有带有相应仿射Weyl组的山雀系统,并且如果$ | z(d)| \ geq 5 $和$ | z(d)| \ neq 9 $具有通用中心扩展。我们还确定$ k_1 $ - 组的结构,并确定$ k_2 $ groups的生成器。
We prove that linear groups over rings of non-commutative Laurent polynomials $D_τ$ have Tits systems with the corresponding affine Weyl groups and have universal central extensions if $|Z(D)|\geq 5$ and $|Z(D)|\neq 9$. We also determine structures of $K_1$-groups and identify generators of $K_2$-groups.