论文标题
在可整合旋转链中的代数构造当前操作员
Algebraic construction of current operators in integrable spin chains
论文作者
论文摘要
广义流体动力学是一种最新的理论,它描述了一维积分模型的大规模运输特性。该理论的核心是一个精确的量子古典对应关系,它指出,即使在相互作用的量子上,保守量的流量也基本上是准经典的。我们通过将可集成旋转链的当前操作员嵌入Yang-baxter集成性的规范框架中,为该观察结果提供代数背景。我们的构造可以应用于各种模型中,包括XXZ旋转链,Hubbard模型,甚至在缺乏粒子保护(例如XYZ链)的模型中。关于XXZ链,我们提供了当前平均值的最新确切结果的简化证明,并解释了它们的准经典性质是如何从确切的计算中出现的。
Generalized Hydrodynamics is a recent theory that describes the large scale transport properties of one dimensional integrable models. At the heart of this theory lies an exact quantum-classical correspondence, which states that the flows of the conserved quantities are essentially quasi-classical even in the interacting quantum many body models. We provide the algebraic background to this observation, by embedding the current operators of the integrable spin chains into the canonical framework of Yang-Baxter integrability. Our construction can be applied in a large variety of models including the XXZ spin chains, the Hubbard model, and even in models lacking particle conservation such as the XYZ chain. Regarding the XXZ chain we present a simplified proof of the recent exact results for the current mean values, and explain how their quasi-classical nature emerges from the exact computations.