论文标题
对局部和非线性阻尼的2D阻尼波方程的状态估计的输入弱
Weak Input to state estimates for 2D damped wave equations with localized and non-linear damping
论文作者
论文摘要
在本文中,我们研究了在尺寸二维的有界域上具有Dirichlet边界条件的阻尼波动方程的输入到状态问题。假定阻尼项是非线性的,并将其本地化为域的开放子集。在第一步中,我们将不受干扰的情况处理作为先前工作的扩展,在整个域上给出了一个稳定结果,在整个域上有一个抑制术语。然后,我们通过干扰解决案例,并提供结果的结果类型。
In this paper, we study input-to-state (ISS) issues for damped wave equations with Dirichlet boundary conditions on a bounded domain of dimension two. The damping term is assumed to be non-linear and localized to an open subset of the domain. In a first step, we handle the undisturbed case as an extension of a previous work, where stability results are given with a damping term active on the full domain. Then, we address the case with disturbances and provide input-to-state types of results.