论文标题

通过新加权积分不等式的时间延迟神经网络的指数稳定性

Exponential stability for time-delay neural networks via new weighted integral inequalities

论文作者

Vong, Seakweng, Hoi, Kachon, Shi, Chenyang

论文摘要

我们研究了具有时间变化延迟的神经网络的指数稳定性。通过扩展基于辅助函数的积分不等式,通过使用加权正交函数来得出一种新颖的积分不等式,其中一个函数是不连续的。然后,使用新的不等式通过Lyapunov-Krasovskii功能(LKF)方法研究时间延迟神经网络的指数稳定性。给出了数值示例以验证所提出的标准的优势。

We study exponential stability for a kind of neural networks having time-varying delay. By extending the auxiliary function-based integral inequality, a novel integral inequality is derived by using weighted orthogonal functions of which one is discontinuous. Then, the new inequality is applied to investigate the exponential stability of time-delay neural networks via Lyapunov-Krasovskii functional (LKF) method. Numerical examples are given to verify the advantages of the proposed criterion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源