论文标题
双林格尔霍尔代数的最高权重模块通过函数的结构
Constructions of highest weight modules of double Ringel-Hall algebras via functions
论文作者
论文摘要
在[19]中,郑研究了构造$ \ bar {\ mathbb {q}} _ l $ -sheaves的有限衍生类别,这些代数堆栈上的某些代数堆栈中,通过使用这些类别对相应的量子组的集成最高权重模块进行分类。在本文中,我们将将郑的作品推广到与功能版本中颤动相关的双铃地孔代数的次级代数的最高权重模块。
In [19], Zheng studied the bounded derived categories of constructible $\bar{\mathbb{Q}}_l$-sheaves on some algebraic stacks consisting of the representations of a enlarged quiver and categorified the integrable highest weight modules of the corresponding quantum group by using these categories. In this paper, we shall generalize Zheng's work to highest weight modules of a subalgebra of the double Ringel-Hall algebra associated to a quiver in a functional version.