论文标题

无线电图估计的深层完成自动编码器

Deep Completion Autoencoders for Radio Map Estimation

论文作者

Teganya, Yves, Romero, Daniel

论文摘要

无线电图为地理区域中每个位置的电源频谱密度提供了指标,并找到了许多应用程序,例如无人机通信,干扰控制,频谱管理,资源分配和网络计划等。无线电图是由分布在空间跨空间的频谱传感器收集的测量值构建的。由于由于电磁波传播的性质,无线电图是空间坐标的复杂函数,因此无模型的方法是强烈的动机。然而,所有现有的无线电占用图估计方案都依赖于无法从经验中学习的插值算法。相比之下,本文提出了一种新颖的方法,在这种方法中,传播现象的空间结构(例如阴影)是从其他环境中测量的数据集中学到的。因此,相对于现有方案,需要较少数量的测量值才能以规定的准确性估算地图。作为额外的新颖性,这也是使用深神经网络估算无线电占用图的第一项工作。具体而言,开发了完全卷积的深度完成自动编码器体系结构,以有效利用此类地图的歧管结构。

Radio maps provide metrics such as power spectral density for every location in a geographic area and find numerous applications such as UAV communications, interference control, spectrum management, resource allocation, and network planning to name a few. Radio maps are constructed from measurements collected by spectrum sensors distributed across space. Since radio maps are complicated functions of the spatial coordinates due to the nature of electromagnetic wave propagation, model-free approaches are strongly motivated. Nevertheless, all existing schemes for radio occupancy map estimation rely on interpolation algorithms unable to learn from experience. In contrast, this paper proposes a novel approach in which the spatial structure of propagation phenomena such as shadowing is learned beforehand from a data set with measurements in other environments. Relative to existing schemes, a significantly smaller number of measurements is therefore required to estimate a map with a prescribed accuracy. As an additional novelty, this is also the first work to estimate radio occupancy maps using deep neural networks. Specifically, a fully convolutional deep completion autoencoder architecture is developed to effectively exploit the manifold structure of this class of maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源