论文标题

hyodo-kato理论具有构成系数

Hyodo-Kato theory with syntomic coefficients

论文作者

Yamada, Kazuki

论文摘要

本文的目的是建立有关Hodge共同体的$ P $ - 采用类似物的理论,并与deligne-Beilinson共同体结合了与混合Hodge结构的变化中的系数。我们首先将登录过度会议的$ f $ isocrystals作为hyodo-kato共同体的系数。特别是,我们证明了Hain-Zucker类型的刚性属性,用于混合日志过度融合$ f $ - 以异晶体。在本文的后半部分,我们将语法系数的新定义作为$ p $ - addic hodge共同体和构想的共同体的系数,并证明了一些有关基础变化和可接受性的基本属性。特别是,我们看到我们的语法系数框架仅取决于选择$ p $ - adic对数的分支,而不是选择基本环的均匀器。 ERTL研究的Hyodo-Kato图的严格分析重建,作者在本文中扮演着关键角色。

The purpose of this article is to establish theories concerning $p$-adic analogues of Hodge cohomology and Deligne-Beilinson cohomology with coefficients in variations of mixed Hodge structures. We first study log overconvergent $F$-isocrystals as coefficients of Hyodo-Kato cohomology. In particular, we prove a rigidity property of Hain-Zucker type for mixed log overconvergent $F$-isocrystals. In the latter half of the article, we give a new definition of syntomic coefficients as coefficients of $p$-adic Hodge cohomology and syntomic cohomology, and prove some fundamental properties concerning base change and admissibility. In particular, we see that our framework of syntomic coefficients depends only on the choice of a branch of the $p$-adic logarithm, but not on the choice of a uniformizer of the base ring. The rigid analytic reconstruction of Hyodo-Kato map studied by Ertl and the author plays a key role throughout this article.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源