论文标题

使用深度学习方法的燃油加载决策的飞行时间预测

Flight Time Prediction for Fuel Loading Decisions with a Deep Learning Approach

论文作者

Zhu, Xinting, Li, Lishuai

论文摘要

在日益增加的经济和环境压力下,航空公司不断寻求新技术并优化飞行运营以减少燃油消耗。但是,现有研究尚未对飞机的重量和燃料消耗产生重大影响,目前对飞机的重量和燃料消耗产生了重大影响。多余的燃料是由调度员和(或)飞行员加载的,以处理燃油消耗不确定性,这主要是由于飞行时间不确定性引起的,这是当前的飞行计划系统无法预测的。在本文中,我们开发了一种新型的空间加权复发性神经网络模型,以基于多个数据源(包括自动依赖依赖的监视广播,气象机场报告和航空公司记录)在国家规模上捕获空中交通信息,以提供更好的飞行时间预测。在此模型中,空间加权层旨在提取网络延迟状态之间的空间依赖性。然后,引入了与空间加权层相关的新训练程序,以提取OD特异性空间权重。长期的短期内存网络用于提取网络延迟状态的时间行为模式。最后,延迟,天气和飞行时间表的功能被馈入完全连接的神经网络,以预测特定飞行的飞行时间。使用航空公司实际运营的一年历史数据评估了所提出的模型。结果表明,与基线方法相比,我们的模型可以提供更准确的飞行时间预测,尤其是对于具有极端延迟的航班。我们还表明,随着飞行时间预测的改善,可以优化燃料加载,并导致燃料消耗降低0.016%-1.915%,而不会增加燃料耗尽的风险。

Under increasing economic and environmental pressure, airlines are constantly seeking new technologies and optimizing flight operations to reduce fuel consumption. However, the current practice on fuel loading, which has a significant impact on aircraft weight and fuel consumption, has yet to be thoroughly addressed by existing studies. Excess fuel is loaded by dispatchers and (or) pilots to handle fuel consumption uncertainties, primarily caused by flight time uncertainties, which cannot be predicted by current Flight Planning Systems. In this paper, we develop a novel spatial weighted recurrent neural network model to provide better flight time predictions by capturing air traffic information at a national scale based on multiple data sources, including Automatic Dependent Surveillance-Broadcast, Meteorological Aerodrome Reports, and airline records. In this model, a spatial weighted layer is designed to extract spatial dependences among network delay states. Then, a new training procedure associated with the spatial weighted layer is introduced to extract OD-specific spatial weights. Long short-term memory networks are used to extract the temporal behavior patterns of network delay states. Finally, features from delays, weather, and flight schedules are fed into a fully connected neural network to predict the flight time of a particular flight. The proposed model was evaluated using one year of historical data from an airline's real operations. Results show that our model can provide more accurate flight time predictions than baseline methods, especially for flights with extreme delays. We also show that, with the improved flight time prediction, fuel loading can be optimized and resulting in reduced fuel consumption by 0.016%-1.915% without increasing the fuel depletion risk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源