论文标题

基塔夫旋转球中非弹性光散射的投射对称组分析

Projective-symmetry-group analysis of inelastic light scattering in Kitaev spin balls

论文作者

Kimura, Taku, Yamamoto, Shoji

论文摘要

射影对称组应用于柏拉图和阿基米德polyhedra实现的球形晶格几何形状中的基塔夫量子旋转液体的拉曼观察。 Kitaev旋转Polyhedra中的Parton单个激发的特征是其归属的投影对称性组的双值不可减至的表示,而与拉曼散射相关的Parton Geminate激发分解为相应点对称组的单值不可减少的表述。我们结合了对Loudon-Fleury顶点的标准点对称组分析,以及对巡回旋转旋转型对地面量规场的精心构造的投影对称 - 对称组分析,以显示$ \ Mathbb {z} _2 _2 _2 _2 _2 _2 $ spin Liquids in $ \ mathbb {z}中的拉曼散射的$ $ $ $ $ $ selection $ selection $ ulud $。

Projective symmetry groups are applied to Raman observations of the Kitaev quantum spin liquids in spherical lattice geometries realized by Platonic and Archimedean polyhedra. Parton single excitations in Kitaev spin polyhedra are characterized by double-valued irreducible representations of their belonging projective symmetry groups, whereas parton geminate excitations relevant to Raman scattering are decomposed into single-valued irreducible representations of the corresponding point symmetry groups. We combine a standard point-symmetry-group analysis of the Loudon-Fleury vertices and an elaborate projective-symmetry-group analysis of itinerant spinons against the ground gauge fields to reveal $hidden$ $selection$ $rules$ for Raman scattering in $\mathbb{Z}_2$ spin liquids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源