论文标题

通过卷积神经网络,全球规模的城市地区的高分辨率土地覆盖地图

Very High Resolution Land Cover Mapping of Urban Areas at Global Scale with Convolutional Neural Networks

论文作者

Tilak, Thomas, Braun, Arnaud, Chandler, David, David, Nicolas, Galopin, Sylvain, Lombard, Amélie, Michaud, Michaël, Parisel, Camille, Porte, Matthieu, Robert, Marjorie

论文摘要

本文介绍了一种方法,可以从非常高分辨率的图像和有限的嘈杂标记数据中生成7级城市地区的土地覆盖图。目的是为具有以下类别的大面积(法国部门)的分割图:沥青,裸土,建筑物,草地,矿物质材料(可渗透的人工化区域),20厘米空中图像和数字高度模型的森林和水。我们在汇总数据库,半自动分类和手动注释的一些感兴趣领域创建了一个培训数据集,以在每个班级中获得完整的地面真相。对不同编码器架构(带有重新编码器的U-NET,U-NET,DEEPLAB V3+)进行了比较研究,具有不同的损失函数。最终产品是一个高度有价值的土地覆盖图,该图从模型预测计算出来,在矢量化之前缝合在一起,二进制和精制。

This paper describes a methodology to produce a 7-classes land cover map of urban areas from very high resolution images and limited noisy labeled data. The objective is to make a segmentation map of a large area (a french department) with the following classes: asphalt, bare soil, building, grassland, mineral material (permeable artificialized areas), forest and water from 20cm aerial images and Digital Height Model. We created a training dataset on a few areas of interest aggregating databases, semi-automatic classification, and manual annotation to get a complete ground truth in each class. A comparative study of different encoder-decoder architectures (U-Net, U-Net with Resnet encoders, Deeplab v3+) is presented with different loss functions. The final product is a highly valuable land cover map computed from model predictions stitched together, binarized, and refined before vectorization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源