论文标题
具有自旋状态激发和钻石颜色中心检测的高量表性CMOS量子磁力计
High-Scalability CMOS Quantum Magnetometer with Spin-State Excitation and Detection of Diamond Color Centers
论文作者
论文摘要
基于量子机械过程的磁力计实现了高灵敏度和长期稳定性,而无需重新校准,但它们集成到现场设备中仍然具有挑战性。本文提出了CMOS量子载体场磁力计,该磁力计使用钻石中的氮气胶囊(NV)中心微型化。通过集成用于自旋控制和读数的关键组件,芯片通过光学检测到的磁共振(ODMR)通过连接到自定义CMOS芯片的钻石平板执行磁力测定法。 ODMR控制在钻石的NV中心高度均匀,由CMOS生成的$ \ sim $ 2.87 GHz磁场启用,在大区域电流驱动的线阵列中,<5%的不均匀性。磁力计芯片的尺寸为1.5毫米$^2 $,以65 nm的批量CMOS技术进行了原型,并附着在300 $ \ times $ 80 $ $ $ $ $ $ m2钻石板上。 NV荧光通过CMOS集成的光电检测器测量。通过基于CMOS集成光谱滤光片的有效排斥,基于频谱依赖的等离激元损耗和CMOS后端线(Beol)中衍射滤波的组合,通过有效排斥红色荧光的绿色泵光通过有效排斥绿色泵的光线来实现此片上测量。该过滤器可实现$ \ sim $ 25 dB的绿灯拒绝。我们测量的灵敏度为245 nt/hz $^{1/2} $,标志着比以前的CMOS-NV传感器原型的130 $ \ times $改进,这在很大程度上要归功于更好的光谱过滤和均质的微波生成比大面积的。
Magnetometers based on quantum mechanical processes enable high sensitivity and long-term stability without the need for re-calibration, but their integration into fieldable devices remains challenging. This paper presents a CMOS quantum vector-field magnetometer that miniaturizes the conventional quantum sensing platforms using nitrogen-vacancy (NV) centers in diamond. By integrating key components for spin control and readout, the chip performs magnetometry through optically detected magnetic resonance (ODMR) through a diamond slab attached to a custom CMOS chip. The ODMR control is highly uniform across the NV centers in the diamond, which is enabled by a CMOS-generated $\sim$2.87 GHz magnetic field with <5% inhomogeneity across a large-area current-driven wire array. The magnetometer chip is 1.5 mm$^2$ in size, prototyped in 65-nm bulk CMOS technology, and attached to a 300$\times$80 $μ$m2 diamond slab. NV fluorescence is measured by CMOS-integrated photodetectors. This on-chip measurement is enabled by efficient rejection of the green pump light from the red fluorescence through a CMOS-integrated spectral filter based on a combination of spectrally dependent plasmonic losses and diffractive filtering in the CMOS back-end-of-line (BEOL). This filter achieves $\sim$25 dB of green light rejection. We measure a sensitivity of 245 nT/Hz$^{1/2}$, marking a 130$\times$ improvement over a previous CMOS-NV sensor prototype, largely thanks to the better spectral filtering and homogeneous microwave generation over larger area.